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Features of the nanosatellite dynamics in LEO
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2. Features of the nanosatellites’ motion in low orbits

3. Spatial motion of the nanosatellite around its center of 

mass in low orbits

4. Planar motion of the nanosatellite around its center of 

mass under the influence of the gravitational and 

aerodynamic moments during descent from circular low-

altitude orbits 

5. The selection of the CubeSat design parameters



Vector form of Euler's equations of motion

where

𝐾0 = 𝐼𝜔 is the kinetic moment (angular momentum) vector about the center of mass,

𝜔 is the absolute angular velocity,

𝑀0
𝑒 is the moment of the external forces about the center of mass,

𝐼 is the inertia tensor.

OaXaYaZa is the inertial frame of reference,

OX1Y1Z1 is the translational moving frame of reference                       

with its origin at the center of mass of the system.

The motion of the system around its center of 

mass is called motion of points of the system

relative to the translational moving frame of 

reference with its origin at the center of mass of 

the system.

Figure 1.  

Uncontrolled  motion of a satellite

around its center of mass
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Basics of the nanosatellite attitude motion



The vector Equation (1) in projections onto the 

coordinate axes of the frame of reference fixed in 

the rotating satellite  and having its axes parallel to 

the principal axes of inertia of the satellite: 

Leonhard Euler (1707 - 1783)

Euler's equations of motion
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where

are the components of the 

angular velocity vector;

Ix, Iy, Iz are the principal moments of inertia;

Mx, My, Mz are the components of the moment

of the external forces. 
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Frames of reference

where

OXYZ is the orbital frame of reference,

OXkYkZk is the trajectory frame of reference, 

m is the inclination angle of trajectory,

 is the true anomaly. Oxyz is the body-fixed frame of reference;

   are Euler angles;

 is the angle of precession;

 =n is the angle of nutation (spatial angle of 

attack);

 is the angle of proper rotation.

Figure 2.  

Figure 3.  
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where bij are the direction cosine matrix of the orthogonal transformation

from the trajectory frame of reference to the body-fixed frame of reference.

Moments of the external forces acting on the satellite

• Gravitational moment

• Aerodynamic moment

• Magnetic moment

• Moment of the pressure of the solar rays

• Reaction moment of gas efflux from the satellite

• Moment of  shocks of meteoric particles

Equations of kinematics
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Gravitational moment

where Ix, Iy, Iz are the principal moments of inertia of the satellite;

R is the distance from the center of attraction

to the center of mass of the satellite; 

g is the universal gravitational constant;

М is the mass of Earth;

cij are the direction cosine matrix of the orthogonal

transformation from the orbital frame of reference

to the body-fixed frame of reference.

Figure 4.  

The projections of the gravitational moment 

vector onto the coordinate axes  of the body-

fixed frame of reference:

𝑚2 = 𝑚1,
𝑂𝐸𝑃2 < 𝑂𝐸𝑃1 ,

𝐹2 > 𝐹1, ℎ2 > ℎ1,
𝑀2 = 𝐹2ℎ2 > 𝑀1 = 𝐹1ℎ1.
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where h is the first integral of the equations of motion of the satellite,

Condition of oscillatory motion of a satellite in a circular orbit

is the orbital angular velocity of the satellite,

Condition of relative stable equilibrium of the satellite

in  the orbital frame of reference

where  Ix, Iy, Iz are the principal moments of inertia. 
Figure 5.  
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𝐼𝑦 > 𝐼𝑥 > 𝐼𝑧 , (8)
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RE is the radius of the spherical Earth,

H is the altitude of the circular orbit.

is Earth's gravitational parameter,



Aerodynamic moment

is the restoring aerodynamic moment coefficient  measured about the nanosatellite 

center of mass,  = n is the spatial angle of attack,  is the angle of proper rotation;

The projections of the aerodynamic moment

vector onto the coordinate axes  of the

body-fixed frame of reference:
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Figure 6.  

),( am

where

is velocity head; 2/2Vq = is atmospheric density; V   is flight speed;

S  is the characteristic area; l  is the characteristic dimension.
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𝑀𝑎 = Ԧ𝑟𝑑 × 𝑄𝑥𝑣,

where Ԧ𝑟𝑑 is the center of pressure position 

relative to the center of mass;  

𝑄𝑥𝑣 = −𝑐0 ሚ𝑆𝑞𝑆 Ԧ𝑒𝑣 is aerodynamic drag force
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c0 = 2.2 is the drag force coefficient;

is the relative static stability margin, Δx is the static stability margin  (the distance

measured from the center of mass to the geometric center of the nanosatellite,

l is the nanosatellite  length;

is the nanosatellite area projected on a plane that is 

perpendicular to the flow velocity vector divided by the characteristic area of nanosatellite,

k is the ratio of the one side surface area to the characteristic area.

For the analysis of angular motion of the nanosatellite in the case when the angular velocity 

of proper rotation is close to uniform the restoring aerodynamic moment coefficient can be 

averaged over the angle of proper rotation:

For approximate analysis of the motion parameters, the dependence of the restoring 

aerodynamic moment coefficient measured about the nanosatellite center of mass mα(α), 

averaged over the angle of proper rotation φ, with sufficient accuracy can be approximated 

by a sinusoidal dependence in the angle of attack:
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(b) - after transformation(a) - before transformation

The restoring aerodynamic moment coefficient

of transforming nanosatellite SamSat-QB50

Before the nanosatellite transformation coefficient                    , after transformation28.00 −=a 5.10 −=a

Figure 7. Dependence of the restoring aerodynamic moment coefficient of SamSat-QB50 

on the spatial angle of attack and the angle of proper rotation        ,

1 - ,     2 - ,      3 - averaged over the angle ,

4 - approximated by sinusoidal dependence .
0= = 45






)sin(0 a

Due to the transformation the aerodynamic moment value is increased in 8 times,

while the gravitational moment is increased only in 1.7.
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Features of nanosatellites’ motion in low orbits
1. The ballistic coefficient of the spacecraft is inversely proportional to the its linear

dimension, thus the value of the ballistic coefficient of nanosatellite is greater than for a

satellite with large dimensions and mass (with the same values of the relative static

stability margin and mass density value), and, therefore, the lifetime in the orbit of

nanosatellite is shorter.

Nanosatellite CubeSat 1U (0.1×0.1×0.1 m3) Minisatellite (Cube: 1 × 1 × 1 m3)

is the ballistic coefficient, 
m

Sc0=

where = 2.2 is the drag force coefficient, m is the satellite mass,

S is the projection area of the nanosatellite on the plane perpendicular to the velocity

vector of the oncoming flow.
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where       is the mass density of the minisatellite,

is the rib length of the minisatellite. 
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Features of nanosatellites’ motion in low orbits 12
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Figure 8. The changes in altitude of the orbit of satellites "Mikhailo Lomonosov“, 

Aist-2D and nanosatellite SamSat-218D within 31 months, which were launched 

into close to a circular orbit with an average altitude of H = 486 km 

at 28 of April, 2016, from Vostochny

Features of nanosatellites’ motion in low orbits

"Mikhailo Lomonosov" 

Aist-2D 

SamSat-218D 
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2. Since the magnitude of the angular acceleration due to the aerodynamic moment of the

satellite is inversely proportional to the square of the its linear dimension, then the angular

acceleration due to the aerodynamic moment acting on nanosatellite is much higher than

for the satellite with large dimensions and mass (with the same values of the relative static

stability margin and mass density value). This extends the range of altitudes at which the

aerodynamic moment acting on the nanosatellite is significant and it can be used for

passively stabilization of the nanosatellite along the velocity vector.

Figure 9. The area of altitudes H and the relative static stability margin,  where the 

aerodynamic moment Ma exceeds the gravitational moment Mg for: (a) - the nanosatellite 

CubeSat 3U; (b) - the satellite whose dimensions are 10 times larger than the dimensions 

of the nanosatellite CubeSat 3U.

SamSat-218D: H0=486km, Ma / Mg = 2.3.      

SamSat-QB50: H0=405km, Ma / Mg = 10. 

SamSat-218D 

SamSat-QB50 

(a) (b)

Features of nanosatellites’ motion in low orbits 14



Features of nanosatellites’ motion in low orbits
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4. It is important to consider the possibility of occurrence of resonant modes of motion.

Due to CubeSat nanosatellites have the shape of a rectangular parallelepiped, the

aerodynamic moment depends not only on the spatial angle of attack but also on the angle

of proper rotation, and this creates the prerequisites for the appearance of a resonance,

which manifests itself in a sharp change of the amplitude of oscillations of the angle of

attack, when the linear integer combination of the oscillation frequency of the spatial angle

of attack and the average frequency of its proper rotation is close to zero.

Figure 10. The resonant change in the spatial angle of attack of CubeSat 3U

for the following initial conditions of motion: the initial altitude of the flight H = 270 km, initial

value of the spatial angle of attack longitudinal angular velocity .,300 = sx /4.0 =

Features of nanosatellites’ motion in low orbits

3. Existing commercial separation systems of nanosatellites generate large initial angular

velocity values. In addition, when launching nanosatellites from platforms that perform

uncontrolled motion, it is necessary to take into account the random nature of the angular

motion of these platforms. These features of the motion of nanosatellites cause the need

to apply a probabilistic approach for analysis of motion around its center of mass.

15



0

0

arcsin n
k

K

K


 
=  

 

0

cos

x x

n k

I

I





=

0( )n x x

n

I I

I




−
=

0
00 conste

o
dK

M K
dt

= =  =

2 2

0 0 0x nK K K= +

0 0x x xK I =0 0 ,n n nK I =

2 2

0 0 0n y z  = +

Regular precession of nanosatellite

Angular velocity of precession:

Angular velocity of proper rotation:

Angle between the axis of symmetry

and the axis about which it precesses

(the half-angle cone of precession): 

0K I=

where

is the kinetic moment (angular momentum)

vector about the center of mass,

 is the absolute angular velocity,

0

eM is the moment of the external forces

about the mass center,

I is the inertia tensor matrix,

Iy = Iz =In , Ix are transversal and longitudinal moments of inertia.

(14)

(15)

(16)

(17)

Figure 11.  

Spatial motion of nanosatellite around its center of mass in low orbits 16



Figure 12.  

Trajectory of the end of the longitudinal axis of nanosatellite SamSat-QB50

on the unit sphere concerning the inertial reference frame

(x = 0.2 deg/s, y = 0, z = 0.2 deg/s,  time interval = 2650 s, statical stability factor = 0)

Regular precession of nanosatellite 17



Vector equation of motion of satellite around its center of mass

under the influence of aerodynamic moment: 

Figure 13.  
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Forced precession of nanosatellite

Spatial motion of nanosatellite around its center of mass in low orbits 18



Figure 14.  

Forced precession of nanosatellite

Trajectory of the end of the longitudinal axis of nanosatellite SamSat-QB50

on the unit sphere concerning the trajectory reference frame (flight altitude H = 330 km,

x = 0.2 deg/s, y = 0, z = 0.2 deg/s,  time interval = 2650 s, statical stability factor = 0.06 m)
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Planar motion of nanosatellite around its center of mass

under the influence of the gravitational and aerodynamic 

moments during descent from circular low-altitude orbits

where

 is the angle of attack;

(19)
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I

 = is the gravitational moment, normalized with respect to 

transversal moment of inertia I;

H is the flight altitude; 

Equations of motion

3
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R
is the orbital angular velocity of the satellite;

( )sin aM
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I
 = is the restoring aerodynamic moment, normalized with respect to 

transversal moment of inertia;
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m is the satellite mass;

g0 = 9.820 m/s2 is the gravitational acceleration on the Earth; 

is the gravitational acceleration;

2

0
0

R

R
g g

 
 
 

=

V is the flight velocity;

S is the characteristic area;

2

2

V
q


= is the velocity head; 

 is the atmospheric density;

l  is the characteristic dimension.

I, Ix are transversal and longitudinal moments of inertia of the satellite;

k= 398600 km3/s2 is the standard gravitational parameter for the Earth;

R=RE+H; RE= 6371000 m  is the Earth radius;

2-U CubeSat

m = 2 kg,

l = 0.2 m,

S = 0.01 m2,

Ix = 0.00333 kg.m2,

I = 0.00833 kg.m2
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Energy integral of system (19) for H=const

2
2

0cos cos
2

a c const E


 + + = = (21)

2 , 0.a c a  Figure 16. 0.5 , 0.c a c 

0.5 , 0, 0.c a c a  

Rotational motion: E0 > -a+c .

Phase portraits of the planar motion

Rotational motion: E0 > -a2/(4c) .

Rotational motion: E0 > -a+c .

Oscillates with respect to the equilibrium position =0 : -a+c > E0 > a+c .

* arccos( 0.5 / ).a c = −

Figure 15.  

Figure 17.
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Figure 18. The change in the spatial angle 

of attack.
Figure 19. Dependence of the angular 

velocity on the angle of attack

2 , 0.a c a 

Initial condition of motion of 2-U CubeSat

flight altitude: 380 km, angle of attack: 8 deg, angular velocity: 0.4522 deg/s, statical stability factor: 0.02m

The results of numerical simulation 23



Figure 20. The change in the spatial angle of 

attack.
Figure 21. Dependence of the angular velocity

on the angle of attack.

* arccos( 0.5 / ).a c = −0.5 , 0, 0.c a c a  

Initial conditions of motion

flight altitude:380 km, angle of attack:55 deg, angular velocity: 0.0346deg/s, statical stability factor:0.002m

24



The selection of the CubeSat design parameters

Passive Stabilization System

25

Figure 22. Aerodynamic orientation Figure 23. Gravitational orientation
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Figure 24. Regions of preferred application of passive stabilization types for 

CubeSat 3U nanosatellite depending on the altitudes H

and relative static margin

1—single-axis aerodynamic stabilization system along the velocity vector (region where the 
aerodynamic moment is greater than the gravitational one Ma > Mg);

2—three-axis aerodynamic-gravitational stabilization system (region where Ma > Mg); 

3—single-axis and three-axis gravitational stabilization systems (region where Ma < Mg); 

4—three-axis gravitational-aerodynamic stabilization system (regions with any proportion of 

aerodynamic and gravitational moments).



The selection of the design parameters of the aerodynamically 

stabilized nanosatellite of the CubeSat standard

2 2
2 0

max 0 0cos cos cos . (22)
2 2 2

a a a

c c c c


  

 
= − − + + + 

 

Maximum value of the angle of attack is determined by the equation:

SamSat-218D SamSat-QB50 
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is distributed according to the Rayleigh law:

0If the value of the initial transverse angular velocity 

The cumulative distribution function:
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The cumulative distribution function :

Cumulative distribution function of the maximum angle of attack 

where  a is coefficient associated with aerodynamic restoring moment; 

c is coefficient associated with the gravitational moment; 
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is distributed according to the Rayleigh law:0If the value 

is distributed according to the uniform law:0If the value 

Formulas for the selection of design parameters

of aerodynamically stabilized nanosatellite standard CubeSat
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−

where x is the static stability factor (the distance measured from the center of mass to the 

nanosatellite (NS) geometric center),  l is the NS length, b is the NS width, 0 is the initial value 

of spatial angle of attack (the angle between the longitudinal axis and velocity vector),

In=Iy=Iz is the inertia transverse moment, q(H) = V 2(H)/2 is the velocity head, V is the flight 

speed, H is the orbit altitude, (H) is the atmospheric density, c0 = 2.2 is the drag force 

coefficient. 
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Figure 25. Nomogram to select structural parameter of nanosatellite depending on the altitude H

and  the parameter values  at ,                     ,                  .deg20max = 95.0=p 00 =

Selection of design parameters of aerodynamically 

stabilized nanosatellite CubeSat 3U

30
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Figure 25. Nomogram to select structural parameter of nanosatellite depending on the altitude H

and  the parameter values  at ,                     ,                  .max 30 deg  = 95.0=p 00 =



The selection of the design parameters for

aerodynamic-gravitational three-axis stabilization

32

Approximate model of the angular motion of a nanosatellite with respect to the angle of roll

ሷ𝛿 −
2𝜇

𝑅𝐸 + 𝐻 3

𝐼𝑧 − 𝐼𝑦

𝐼𝑥
𝑠𝑖𝑛 2 𝛿 = 0 (27)

where 𝛿 is angle of the transverse axis deviation from the flight plane

𝐹 𝛿𝑚𝑎𝑥 = 2𝛷0

2
𝜇

(𝑅𝐸 + 𝐻)3
𝐼𝑧 − 𝐼𝑦
𝐼𝑥

(𝑐𝑜𝑠 2 𝛿𝑚𝑎𝑥 − 𝑐𝑜𝑠 2 𝛿0)

𝜎
(28)

Laws of distribution of the maximum angle of roll

• If the modulus of 𝜔𝑥0 is distributed according to the uniform law in the interval 0, 𝜔𝑥0𝑚𝑎𝑥

𝐹 𝛿𝑚𝑎𝑥 =

2
𝜇

(𝑅𝐸 + 𝐻)3
𝐼𝑧 − 𝐼𝑦
𝐼𝑥

𝑐𝑜𝑠 2 𝛿𝑚𝑎𝑥 − 𝑐𝑜𝑠 2 𝛿0

𝜔𝑥0𝑚𝑎𝑥
(29)

𝜔𝑥0 = ሶ𝛿0 (initial longitudinal angular velocity)  has a largest spread

Here 𝛷0(𝑤) =
1

2𝜋
0׬
𝑤
𝑒− Τ𝑤2 2 𝑑𝑤 is Laplace function

• If the value 𝜔𝑥0 have Gaussian distribution with zero mathematical expectation

and with standard deviation  𝜎



The selection of the design parameters for

aerodynamic-gravitational three-axis stabilization

33

𝑑𝑘 =
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
≥
(𝑅𝐸 + 𝐻)3

2𝜇

𝜎2 𝑤∗ 2

𝑐𝑜𝑠 2 𝛿0 − 𝑐𝑜𝑠 2 𝛿𝑚𝑎𝑥
∗ (30)

• If the modulus of 𝜔𝑥0 is distributed according to the uniform law in the interval 0, 𝜔𝑥0𝑚𝑎𝑥

𝑑𝑘 =
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
≥
(𝑅𝐸 + 𝐻)3

2𝜇

(𝜔𝑥0𝑚𝑎𝑥𝑝
∗)2

𝑐𝑜𝑠 2 𝛿0 − 𝑐𝑜𝑠 2 𝛿𝑚𝑎𝑥
∗ (31)

• If the value 𝜔𝑥0 have Gaussian distribution with zero mathematical expectation

and with standard deviation  𝜎

Here 𝑤∗ is Laplace function argument with the given probability 𝛷0 𝑤∗ = Τ𝑝∗ 2
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Figure 26. Example of a nomogram for choosing the ratios of the moments of inertia for 

various values of the modulus of the initial longitudinal angular velocity 𝜔𝑥0𝑚𝑎𝑥

ഥ𝐼𝑥 =
𝐼𝑥

𝐼𝑦
, ഥ𝐼𝑧 =

𝐼𝑧

𝐼𝑦
are ratios of the moments of inertia
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𝛽 = 𝛼 − Τ𝜋 2 is the  angle of deviation from the local vertical in the plane of the angle of attack 

Requirement for the design parameters

• In case the initial angular velocity 𝜔𝑛0 has

Rayleigh distribution with parameter 𝜎

when considering motion with regard to the angle 𝛽

when considering motion with regard to the angle 𝜓

when considering motion with regard to the angle 𝜑

• In case the initial angular velocity  𝜔𝑛0 is distributed 
according to the uniform law within the interval [0, 𝜔𝑛0𝑚𝑎𝑥]

𝐼𝑧 − 𝐼𝑥
𝐼𝑦

≥
−2(𝑅𝐸 + 𝐻)3

3𝜇

𝜎2 𝑙𝑛( 1 − 𝑝∗)

𝑠𝑖𝑛2 𝛽𝑚𝑎𝑥
∗ − 𝑠𝑖𝑛2 𝛽0

(32)

𝐼𝑦 − 𝐼𝑥

𝐼𝑧
≥
−(𝑅𝐸 + 𝐻)3

2𝜇

𝜎2 𝑙𝑛( 1 − 𝑝∗)

𝑠𝑖𝑛2𝜓𝑚𝑎𝑥
∗ − 𝑠𝑖𝑛2𝜓0

(33)

• If the modulus of 𝜔𝑥0 is distributed according to the 
uniform law in the interval 0, 𝜔𝑥0𝑚𝑎𝑥

𝐼𝑧 − 𝐼𝑥
𝐼𝑦

≥
(𝑅𝐸 + 𝐻)3

3𝜇

𝜔𝑛0𝑚𝑎𝑥𝑝
∗ 2

𝑠𝑖𝑛2 𝛽𝑚𝑎𝑥
∗ − 𝑠𝑖𝑛2 𝛽0

(35)

𝐼𝑦 − 𝐼𝑥

𝐼𝑧
≥
(𝑅𝐸 + 𝐻)3

4𝜇

𝜔𝑛0𝑚𝑎𝑥𝑝
∗ 2

𝑠𝑖𝑛2𝜓𝑚𝑎𝑥
∗ − 𝑠𝑖𝑛2𝜓0

(36)

• If the value 𝜔𝑥0 has Gaussian distribution with zero 
mathematical expectation and with standard deviation  𝜎

𝐼𝑦 − 𝐼𝑧

𝐼𝑥
≥
(𝑅𝐸 + 𝐻)3

𝜇

𝜔𝑥0𝑚𝑎𝑥𝑝
∗ 2

𝑠𝑖𝑛2 𝜑𝑚𝑎𝑥
∗ − 𝑠𝑖𝑛2 𝜑0

(37)
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
≥
(𝑅𝐸 + 𝐻)3

𝜇

𝜎2 𝑡∗ 2

𝑐𝑜𝑠2 𝜑0 − 𝑐𝑜𝑠2 𝜑𝑚𝑎𝑥
∗ (34)
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Figure 27. Restrictions on the ratio of the moments of 

inertia to ensure gravitational three-axis stabilization at 

𝜔𝑛0𝑚𝑎𝑥 = 0.020/𝑠, 𝜔𝑥0𝑚𝑎𝑥 = 0.010/𝑠

Figure 27. Restrictions on the ratio of the moments of 

inertia to ensure gravitational three-axis stabilization at 

𝜔𝑛0𝑚𝑎𝑥 = 0.030/𝑠, 𝜔𝑥0𝑚𝑎𝑥 = 0.0150/𝑠

ഥ𝐼𝑥 =
𝐼𝑥

𝐼𝑦
, ഥ𝐼𝑧 =

𝐼𝑧

𝐼𝑦
are ratios of the moments of inertia 𝑝∗ = 0.95, 𝐻 = 500 𝑘𝑚

𝛽𝑚𝑎𝑥
∗ = 𝜓𝑚𝑎𝑥

∗ = 𝜑𝑚𝑎𝑥
∗ = 200
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The technique for  choosing design parameters of a CubeSat 3U 

1. The values  𝛥𝑥, 𝛥𝑦 must be kept as small as possible. 

2. Select design parameters that satisfy the given restrictions on the 

angle of precession  ψ using formulas (33) or (36) depending on the 

selected distribution law

3. Choose the static stability margin along the z-axis  for the chosen 

moments of inertia ratios, while the restriction on the value of the initial 

transverse angular velocity is taken the same as when considering the 

motion along the angle of precession 𝜓

𝛥𝑧 ≥ 𝐼𝑦[𝑙𝑛( 1 − 𝑝∗)𝜎2 + 𝑐 (𝑐𝑜𝑠2 𝛼𝑚𝑎𝑥
∗ − 𝑐𝑜𝑠2 𝛼0) + 𝑎𝑥(𝑢 𝛼𝑚𝑎𝑥

∗ − 𝑢(𝛼0))]/[𝑐0𝑆𝑥𝑞(𝐻)(𝜈 𝛼𝑚𝑎𝑥
∗ − 𝜈(𝛼0))]

• In case the initial angular rate  𝜔𝑛0 is distributed according to the uniform law within 

the interval [0, 𝜔𝑛0𝑚𝑎𝑥]

(38)

Here 𝑢 𝛼 =
1

2
𝑠𝑖𝑔𝑛 cos𝛼 cos2 𝛼 +

𝑘

2
𝑠𝑖𝑔𝑛 sin 𝛼

sin 2𝛼

2
− 𝛼 + 2𝜋

𝛼+𝜋

2

𝑣(𝛼) =
1

2
𝑠𝑖𝑔𝑛(𝑐𝑜𝑠( 𝛼))

𝑠𝑖𝑛 2𝛼

2
+ 𝛼 −

𝜋

2
− 2𝜋 ⋅

𝛼+
𝜋

2

2𝜋
+

𝑘

2
𝑠𝑖𝑔𝑛(𝑠𝑖𝑛( 𝛼)) 𝑠𝑖𝑛2 𝛼

• In case the initial angular rate 𝜔𝑛0 has Rayleigh distribution with parameter 𝜎

𝛥𝑧 ≥ 𝐼𝑦[(𝜔𝑛0𝑚𝑎𝑥𝑝
∗)2 − 2𝑐(𝑐𝑜𝑠2 𝛼𝑚𝑎𝑥

∗ − 𝑐𝑜𝑠2 𝛼0) − 2𝑎𝑥(𝑢 𝛼𝑚𝑎𝑥
∗ − 𝑢(𝛼0))]/ −2𝑐0𝑆𝑥𝑞 𝐻 𝜈 𝛼𝑚𝑎𝑥

∗ − 𝜈 𝛼0

(39)
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4. Determine the limitation on the value of the initial nanosatellite longitudinal angular velocity 𝜔𝑥0

• If the value 𝜔𝑥0 have Gaussian distribution with zero mathematical expectation and

with standard deviation  𝜎

• If the modulus of 𝜔𝑥0 is distributed according to the uniform law in the interval 0, 𝜔𝑥0𝑚𝑎𝑥

𝜎 ≤

ቇ
−2𝛥𝑧𝑐0𝑙𝑥𝑙𝑦𝑞 𝐻

𝐼𝑥
(𝑐𝑜𝑠𝜑𝑚𝑎𝑥−𝑐𝑜𝑠𝜑0) +

𝜇
(𝑅𝐸 + 𝐻)3

𝐼𝑧 − 𝐼𝑦
𝐼𝑥

(𝑐𝑜𝑠2 𝜑𝑚𝑎𝑥 − 𝑐𝑜𝑠2 𝜑0

𝑤∗

𝜔𝑥0𝑚𝑎𝑥 ≤

ቇ
−2𝛥𝑧𝑐0𝑙𝑥𝑙𝑦𝑞 𝐻

𝐼𝑥
(𝑐𝑜𝑠𝜑𝑚𝑎𝑥−𝑐𝑜𝑠𝜑0) +

𝜇
(𝑅𝐸 + 𝐻)3

𝐼𝑧 − 𝐼𝑦
𝐼𝑥

(𝑐𝑜𝑠2 𝜑𝑚𝑎𝑥 − 𝑐𝑜𝑠2 𝜑0

𝑝∗

(40)

(41)



Thank you for your attention!


